MYCOM	IMS201-120 步进马达驱动 长期销售
  • MYCOM	IMS201-120 步进马达驱动 长期销售
  • MYCOM	IMS201-120 步进马达驱动 长期销售
  • MYCOM	IMS201-120 步进马达驱动 长期销售

产品描述

输入电压115-230VAC 电流0-5A 输出电压0-180VDC 适配电机直流电机 适用场合机械传动 材质不锈钢和铜 电机响应时间0.1秒 驱动器输出方式电压输出 驱动器电压24VDC 驱动器电流5A
MYCOM驱动器对步进电机的速度控制技术进行了大量的研究,建立了多种加减速控制数学模型,如指数模型、线性模型等,并在此基础上设计开发了多种控制电路,改善了步进电机的运动特性,推广了步进电机的应用范围指数加减速考虑了步进电机固有的矩频特性,既能保证步进电机在运动中不失步,又充分发挥了电机的固有特性,缩短了升降速时间,但因电机负载的变化,很难实现而线性加减速仅考虑电机在负载能力范围的角速度与脉冲成正比这一关系,不因电源电压、负载环境的波动而变化的特性,这种升速方法的加速度是恒定的,其缺点是未充分考虑步进电机输出力矩随速度变化的特性,步进电机在高速时会发生失步。
PF566-AC(BC)
PF569-AC(BC)
GTS500-120-5641AC(BC)
GTS500-120-5661AC(BC)
GTS500-120-5691AC(BC)
IMS50-110-5641AC(BC)
IMS50-110-5661AC(BC)
IMS50-110-5691AC(BC)
IMS50-110-5961AC(BC)
IMS50-110-5991AC(BC)
IMS50-110-59131AC(BC)
IMS50-210-5692AC(BC)
MYCOM	IMS201-120
由于PLC主要用于现场控制,所以采集现场数据是十分必要的功能,在此基础上将PLC与上位计算机或触摸屏相连接,既可以观察这些数据的当前值,又能及时进行统计分析,有的PLC具有数据记录单元,可以用一般个人电脑的存储卡插入到该单元中保存采集到的数据。PLC的另一个特点是自检信号多.利用这个特点,PLC控制系统可以实现白诊断式,减少系统的故障,提高系统的可靠性。
IMS203-220(F)L-243A(B)
IMS203-220(F)L-244A(B)
IMS203-220(F)L-244HA(B)
IMS203-220(F)L-264A(B)
IMS203-220(F)L-265A(B)
IMS203-220(F)L-268A(B)
IMS203-220L
IMS203-420L
IMS203-420FL
IMS20-210(L)
IMS20-210-243A(B)
IMS20-210-244A(B)
IMS20-210-245A(B)
IMS20-210-264A(B)
IMS20-210-265A(B)
IMS20-210-268A(B)
PS245-A(B)
MYCOM	IMS201-120
SNC-230
SNC-430
MC-230
MC-430
ECM-010
CBS50-010-4520
CBS50-010-4580
CBS50-110-6571
CBS50-110-6641
CBS50-110-6701
CBS50-110-6931
NSM50-4520
NSM50-4580
MYCOM	IMS201-120
智能控制不依赖或不完全依赖控制对象的数学模型 ,只按实际效果进行控制 , 在控制中有能力考虑系统的不确定性和性 , 突破了传统控制必须基于数学模型的框架 。目前 , 智能控制在步进电机系统中应用较为成熟的是模糊逻辑控制 、网络和智能控制的集成 。
     模糊控制就是在被控制对象的模糊模型的基础上 ,运用模糊控制器的近似推理等手段 ,实现系统控制的方法 。作为一种直接模拟人类思维结果的控制方式 , 模糊控制已广泛应用于工业控制领域 。与常规控制相比 ,模糊控制无须的数学模型 , 具有较强的鲁棒性 、自适应性 , 因此适用于非线性 、时变 、时滞系统的控制 。文献[ 16] 给出了模糊控制在二相混合式步进电机速度控制中应用实例 。系统为超前角控制 ,设计无需数学模型 ,速度响应时间短 。 
IMS500-020L-535EA(B)
IMS500-020L-543AC(BC)
IMS500-020L-544AC(BC)
IMS500-020L-545AC(BC)
IMS500-120L-564AC(BC)
IMS500-120L-566AC(BC)
IMS500-120L-569AC(BC)
PEE533-A
PF564-AC
PF566-AC
PF569-AC
IMS500-020L
IMS500-120L
PCE5431-BC
PCE5441-BC
PCE5451-BC
PCE5641-BC
PCE5661-BC
PCE5691-BC
PCE5961-BC
PCE5991-BC
PCE59131-BC
PCE5641-ACM
PCE5661-ACM
PCE5691-ACM
PCE5961-ACM
PCE5991-ACM
PCE59131-ACM
在可编程逻辑控制器系统设计时,首先应确定控制方案,下一步工作就是可编程逻辑控制器工程设计选型。工艺流程的特点和应用要求是设计选型的主要依据。可编程逻辑控制器及有关设备应是集成的、标准的,按照易于与工业控制系统形成一个整体,易于扩充其功能的原则选型所选用可编程逻辑控制器应是在相关工业领域有投运业绩、成熟可靠的系统,可编程逻辑控制器的系统硬件、软件配置及功能应与装置规模和控制要求相适应。熟悉可编程序控制器、功能表图及有关的编程语言有利于缩短编程时间,因此,工程设计选型和估算时,应详细分析工艺过程的特点、控制要求,明确控制任务和范围确定所需的操作和动作,然后根据控制要求,估算输入输出点数、所需存储器容量、确定可编程逻辑控制器的功能、外部设备特性等,后选择有较高性能价格比的可编程逻辑控制器和设计相应的控制系统。
//www.ha0618.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第4563339位访客

版权所有 ©2025-04-20 沪ICP备16049765号-2 上海邵欧自动化设备有限公司 保留所有权利.

技术支持: 八方资源网 免责声明 管理员入口 网站地图
百度首页推广咨询电话:18926402834 李经理 微信同号

Baidu
map