输入电压115-230VAC
电流0-5A
输出电压0-180VDC
适配电机直流电机
适用场合机械传动
材质不锈钢和铜
电机响应时间0.1秒
驱动器输出方式电压输出
驱动器电压24VDC
驱动器电流5A
MYCOM驱动器主要应用在工业、航天、机器人、精密测量等领域,如跟踪卫星用光电经纬仪、仪器、通讯和等设备,细分驱动技术的广泛应用,使得电机的相数不受步距角的限制,为产品设计带来了方便。目前在步进电机的细分驱动技术上,采用斩波恒流驱动,仪脉冲宽度调制驱动、电流矢量恒幅均匀旋转驱动控制止,,几大大提高步进电机运行运转精度,使步进电机在中、小功率应用领域向高速且精密化的方向发展。好初,对步进电机相电流的控制是由硬件来实现的,通常采用两种方法,采用多路功率开关电流供电,在绕组上进行电流叠加,这种方法使功率管损耗少,但由于路数多,所以器件多,体积大。
智能控制不依赖或不完全依赖控制对象的数学模型 ,只按实际效果进行控制 , 在控制中有能力考虑系统的不确定性和性 , 突破了传统控制必须基于数学模型的框架 。目前 , 智能控制在步进电机系统中应用较为成熟的是模糊逻辑控制 、网络和智能控制的集成 。
模糊控制就是在被控制对象的模糊模型的基础上 ,运用模糊控制器的近似推理等手段 ,实现系统控制的方法 。作为一种直接模拟人类思维结果的控制方式 , 模糊控制已广泛应用于工业控制领域 。与常规控制相比 ,模糊控制无须的数学模型 , 具有较强的鲁棒性 、自适应性 , 因此适用于非线性 、时变 、时滞系统的控制 。文献[ 16] 给出了模糊控制在二相混合式步进电机速度控制中应用实例 。系统为超前角控制 ,设计无需数学模型 ,速度响应时间短 。
IMS500-020L-535EA(B)
IMS500-020L-543AC(BC)
IMS500-020L-544AC(BC)
IMS500-020L-545AC(BC)
IMS500-120L-564AC(BC)
IMS500-120L-566AC(BC)
IMS500-120L-569AC(BC)
PEE533-A
PF564-AC
PF566-AC
PF569-AC
IMS500-020L
IMS500-120L
PCE5431-BC
PCE5441-BC
PCE5451-BC
PCE5641-BC
PCE5661-BC
PCE5691-BC
PCE5961-BC
PCE5991-BC
PCE59131-BC
PCE5641-ACM
PCE5661-ACM
PCE5691-ACM
PCE5961-ACM
PCE5991-ACM
PCE59131-ACM

NSM50-6571
NSM50-6641
NSM50-6701
NSM50-6931
CBS50-010
CBS50-110
OSC-PCS28P15
OMC-PHR6P15
OMC-XHP6P15
OPC-X3P20
MR-300DS
MPR-100JWIN
MPR-100S
MPR-100S-D
MPV-100S
MPV-101S
MPV-100S-D
MPV-101S-D
ICD201-1120A

汽车在繁重的工作条件下制动(例如在下长坡时),制动器的温度通常在 以上,有时高达 。高速制动时,制动器的温度也会很快上升。制动器温度上升后,摩擦力矩常会有显著下降,这种现象称为制动器的热衰退还有可能通过钢背将大量的热量传递给制动活塞,导致制动液沸腾或汽化,使制动器完全失效。这种现象的发生给汽车的安全性带来了很大的隐患。制动摩擦副表面的温度状况及其分布特点,将会直接影响到制动器的制动性能与使用寿命。对于制动器设计和摩擦材料的研制,所要解决的主要问题也是寻求一种具有足够的热容量、在常温及高温条件下保持足够的机械强度和耐磨性的材料搭配方案。
MLN50-120-5691AC(BC)
MLN50-120-5961AC(BC)
MLN50-120-5991AC(BC)
MLN50-120-59131AC(BC)
PCE5641-AC(BC)
PCE5661-AC(BC)
PCE5691-AC(BC)
PCE5961-AC(BC)
PCE5991-AC(BC)
PCE59131-AC(BC)
MLH20-1030
IMS203-220FL
PCE5692-AC(BC)
PCE5962-AC(BC)
PCE5992-AC(BC)
IMS50-110
IMS50-210
IMS50-120
IMS50-220
OMC-NC5P15
IMS51-110-5641AC(BC)
IMS51-110-5661AC(BC)
IMS51-110-5691AC(BC)

摩擦制动器是利用两个运动表面相互接触时所产生的摩擦阻力,将汽车运动时的动能和势能转化为热能,从而达到使汽车减速或停车的一种装置。摩擦制动器是使机械中的运动件停止或减速的机械零件。俗称刹车。利用两个运动表面相互接触时所产生的摩擦阻力,将汽车运动时的动能和势能转化为热能,从而达到使汽车减速或停车的一种装置。
摩擦制动器主要由制动架、制动件和操纵装置等组成。有些摩擦制动器还装有制动件间隙的自动调整装置。为了减小制动力矩和结构尺寸,摩擦制动器通常装在设备的高速轴上,但对安全性要求较高的大型设备(如矿井提升机、电梯等)则应装在靠近设备工作部分的低速轴上。有些制动器已标准化和系列化,并由工厂制造以供选用。
IMS21-220 (L)
IMS21-220-243A(B)
IMS21-220-244A(B)
IMS21-220-245A(B)
IMS21-220-264A(B)
IMS21-220-265A(B)
IMS21-220-268A(B)
PF245-A(B)
IMS21-220
MLN20-110
MLN20-210
MLN20-210-264A(B)
MLN20-210-265A(B)
MLN20-210-268A(B)
使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用摩擦制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。制动摩擦副表面的温度状况及其分布特点,将会直接影响到制动器的制动性能与使用寿命。对于制动器设计和摩擦材料的研制,所要解决的主要问题也是寻求一种具有足够的热容量、在常温及高温条件下保持足够的机械强度和耐磨性的材料搭配方案。摩擦制动器的工作机制是利用摩擦副之间的摩擦来达到终止~减速或保持物体运动的目的。
//www.ha0618.com